

    
      
          
            
  
The model-learning documentation

model-learning is a library for model learning and model reduction, written in MATLAB. The main methods and algorithms implemented in the library have been introduced in the papers [1,2], wherein they are derived and documented.
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Installation

To install the library, follow these steps.


	Run addpaths.m.


	Enjoy.





Note

The data generated by the library are by default stored into a folder data, contained in the main folder of the library. If you want to modify this location, just copy in the main folder the file options_example.ini into options.ini (not git tracked) and customize the field datapath.




Note

A collection of pre-trained ANNs is available in the repo model-learning_data [https://github.com/FrancescoRegazzoni/model-learning_data]. To use them, clone or download the repo and make the datapath field point to the path of the repo (or alternatively copy the content of the repo into the datapath folder).





Python wrapper

The library provides a Python interface to deploy the trained model. The module can be loaded as:

import pyModelLearning





To install it, you can choose among the following options.


Option 1: Install the library by setuptools [https://setuptools.readthedocs.io/]

From the main folder of this repository run:

$ pip install . --use-feature=in-tree-build







Option 2: Add the library path to Python paths


Linux / macOS

Add to your .bashrc:

export PYTHONPATH="${PYTHONPATH}:/path/to/model-learning"







Windows

Add the path of model-learning to the PYTHONPATH environment variable.
Alternatively, you can write the path of model-learning inside a pth file, as described here [https://docs.python.org/3/using/windows.html#finding-modules].




Option 3: Add the library path within your python script

Put the following lines at the beginning of your Python script:

import sys
sys.path.append("/path/to/model-learning")
import pyModelLearning









            

          

      

      

    

  

    
      
          
            
  
Quickstart

The repository contains several examples of usage of the library, some of which are documented and described in [1] [https://doi.org/10.1016/j.jcp.2019.07.050].
Each example is contained into a dedicated folder in \examples (e.g. \examples\wave_oned). The standard structure for an example envisages:


	The problem specifications, through an .ini file (e.g. \examples\wave_oned\wave1D.ini).


	The high-fidelity model definition, through a .m file (e.g. \examples\wave_oned\wave1D_getmodel.ini).


	A script that generates training and testing datasets (e.g. \examples\wave_oned\wave1D_generate_tests.ini) and stores them into the datapath folder.


	One or more configuration files to train a reduced model, with the format opt_*.ini (e.g. \examples\wave_oned\opt_wave1D.ini). To use them, execute the command:

model_learn('opt_wave1D.ini')







	One or more scripts to analyze and postprocess the results obtained with the trained models and the HF model.




To create a new example, create a new folder in the folder \examples.

This documentation also contains a Tutorial to get acquainted with the library.




            

          

      

      

    

  

    
      
          
            
  
Notes about the conventions


Function arguments

Functions typically accept a list of mandatory arguments, briefly documented in the function help. Optional arguments are typically passed by a structure array opt. In the first lines of the function, default values are typically assigned to undefined optional arguments. These lines thus provide a list of the possible optional arguments.



Variable names

In the code the names of the variables concerning the models refelct the convention used in [1] [https://doi.org/10.1016/j.jcp.2019.07.050]. Specifically, models are denoted as follows:


\[\begin{split}\frac{d \mathbf{x}}{dt} &= \mathbf{f}(\mathbf{x}(t),\mathbf{u}(t),\boldsymbol{\alpha}) \\
\mathbf{y}(t) &= \mathbf{g}(\mathbf{x}(t))\end{split}\]

where \(t\) is time, \(\mathbf{x}(t)\) is the internal state, \(\mathbf{u}(t)\) (if present) is the time-dependent input, \(\boldsymbol{\alpha}\) (if present) is a constant parameter, \(\mathbf{y}(t)\) is the output.





            

          

      

      

    

  

    
      
          
            
  
Tutorial

Position the Matlab current directory into the folder \examples\tutorial. The tutorial consists into two examples:



	Learning models without inter-individual variability
	Definig the problem

	Definig the high-fidelity model

	Generating training datasets

	Training the ANN

	Using the trained model





	Learning models with inter-individual variability
	Definig the problem

	Definig the high-fidelity model

	Generating training datasets

	Training the ANN

	Using the trained model

	Using data assimilation on the learned model












            

          

      

      

    

  

    
      
          
            
  
Learning models without inter-individual variability

Consider the nonlinear transmission line circuit example of Sec. 4.2 of [1] [https://doi.org/10.1016/j.jcp.2019.07.050]. The learning pipeline consists in the steps listed below. This tutorial allows to follow the pipeline step by step, but the full list of commands are collected in the unique file \examples\tutorial\NTL1_tutorial.m.


Definig the problem

A problem mainly consists in the definition of the input-output variables (how many they are, which are the bounds for each variable). Notice that a problem does not contain any information about the map linking inputs to outputs: such map is rather defined by a model, which is a different concept, treated in the next section. Indeed, for a given problem (in this case, the problem is linking the input current of the circuit to the output voltage) one may have several models.

Problems are defined through .ini files. The full list of tags to define a problem is available in \examples\problem_example.ini.

The problem of the current example is defined in \examples\tutorial\NTL1.ini. A problem may contain a handle to generate the high-fidelity model associated to the problem, as we will see in the next section.



Definig the high-fidelity model

A model can be regarded as a map from a time-dependent input to a time-dependent output, according to the definition of Sec. 2.1 of [1]. Each model is associated to a problem. Notice that a model comprises both the mathematical model and its discretization: it corresponds thus to the concept of numerical model.

Models are represented by MATLAB structs [https://www.mathworks.com/help/matlab/ref/struct.html], that are typically generated by ad-hoc functions, for better versatility. In this example, the high-fidelity model is generated by the function \examples\tutorial\NTL1_getmodel.m.  The model struct should contain the following fields:

Basic fields


	model.nX: number of internal states


	model.x0: initial state


	model.dt: integration time step




Model dynamics

The model dynamics can be defined in different ways (field model.advance_type), depending on the features of the model (linear, nonlinear, ecc.). In this example, the model is defined through its right-hand side and it is solved by Explicit Euler scheme (model.advance_type = 'nonlinear_explicit'). The right-hand side is defined in the field model.f, which implements Eq. (32) of [1] [https://doi.org/10.1016/j.jcp.2019.07.050].

Model output

Also the output of the model can be defined in different ways (field model.output_type). In this case, it is of type 'insidestate', which means that the output is given by the first model.nY internal states (this corresponds to the input-inside-the-state approach of [1] [https://doi.org/10.1016/j.jcp.2019.07.050]).


Note

In alternative to the implementation contained in \examples\tutorial\NTL1_getmodel.m, models can be defined as black-boxes (rather than defining the number of variables, initial state, dynamics, etc.).
This is the only possibility when the model is defined by an external software.
In this case, the user only needs to write a wrapper for the external call, and bind inputs and outputs.
An example is contained in \examples\tutorial\NTL1_getmodel_blackbox.m. Notice that all you need to specify is the flag model.blackbox = 1 and the handler function output = model.forward_function(test, options) (see the examples for more details).



Once the problem and the model have been defined, we can load them with the following commands:

problem = problem_get('tutorial','NTL1.ini');
HFmod = problem.get_model(problem);





To employ the model to perform simulations, first define a test struct:

test_solve.tt = [0 10];
test_solve.uu = @(t) .5*(1+cos(2*pi*t/10));





Then, solve the model as follows:

figure();
output = model_solve(test_solve,HFmod,struct('do_plot',1));





The struct output contains the output test struct of the simulation.



Generating training datasets

With the following lines, we use the high-fidelity model HFmod to generate two training datasets. With the option do_save = 1 the datasets are stored into an automatically generated path inside the data folder defined in options.ini (see Installation), according the example name and problem name.

rng('default') % for reproducibility

opt_gen.do_plot = 1;
opt_gen.do_save = 1;
opt_gen.optRandomU.time_scale = .02;

opt_gen.outFile = 'samples_rnd.mat';
dataset_generate_random(HFmod,100,opt_gen);

opt_gen.constant = 1;
opt_gen.wait_init = 1;
opt_gen.wait_init_time_wait = .2;
opt_gen.wait_init_time_raise = 0;
opt_gen.outFile = 'samples_step.mat';
dataset_generate_random(HFmod,50,opt_gen);





The first dataset contains 100 tests associated to random inputs. The second one contains 50 tests associated to step inputs.

It is possible to extract subsets from datasets and combine them. With the following code, for instance, we create a dataset by combining the first three tests of the step responses generated before with the first 8 random responses.:

dataset_def.problem = problem;
dataset_def.type = 'file';
dataset_def.source = 'samples_step.mat;1:3|samples_rnd.mat;1:8';
train_dataset = dataset_get(dataset_def);





To plot the dataset, type:

dataset_plot(train_dataset,problem)







Training the ANN

Training specifications are defined into an option file. The full list of available options, with relative documentation, can be found in \mor_ANN_blackbox\opt_example.ini.

The option file for the current example is contained into \examples\tutorial\NTL1_opt.ini. We now comment the main fields:


	Problem\dataset_source_train and Problem\dataset_source_tests contain the specifications for the training and the test datasets, with the same sitax used before


	Model\N: number of states in the learned model


	ANN\layF: number of neurons in the hidden layers of the ANN




To train the network, run the following command, which will stop afer 100 training epochs:

model_learn('NTL1_opt.ini')





The trained model is stored in an automatically generated path. A name is automatically assigned to the trained model: it appears at the beginning of training but it is also copied to the clipboard just after it appears in the MATLAB console. Paste it somewhere to be able to load the trained model later. The name is generated according to the main settings of learning plus a time stamp (e.g. ‘test_int_N2_hlayF5_dof32_2019-02-28_11-07-14’)



Using the trained model

To load the learned model, run (after replacing the learned model name with the one you stored before):

ANNmod = read_model_fromfile(problem,'test_int_N2_hlayF5_dof32_2019-02-28_11-07-14');





The struct ANNmod is a model struct, as much as HFmod: it can indeed be employed to perform the same actions as the high-fidelity model:

figure();
output = model_solve(test_solve,ANNmod,struct('do_plot',1));





Moreover, being a spacial type of model (a model whose right-hand side is defined by an ANN), it has additional features. For instance, the ANN can be visualized, by running ANNmod.visualize().

To evaluate the level of approximation of the learned model, first load a test dataset:

dataset_def.problem = problem;
dataset_def.type = 'file';
dataset_def.source = 'samples_step.mat;11:50|samples_rnd.mat;21:100';
test_dataset = dataset_get(dataset_def);





Then, evaluate the error with the high-fidelity model (it must be zero):

model_compute_error(HFmod, test_dataset);





and with the learned model:

model_compute_error(ANNmod, test_dataset);









            

          

      

      

    

  

    
      
          
            
  
Learning models with inter-individual variability

In the example considered in the previous section, all the indivuals in the training set shared the same dynamics and the same initial state. We now consider the case of inter-individuals variability, that is when the individuals may differ for either the dynamics (more precisely, we suppose that the dynamics follows a common law, dependent on parameters, which may be be different for different individuals) or the intial state, or both.

We consider in particular the following exponential model:


\[\begin{split}\frac{dx}{dt} &= \alpha x(t) \\
x(0) &= x_0\end{split}\]

where the output is \(x\) itself and the initial state \(x_0\) and the parameter \(\alpha\) may be different for different individuals.

Notice that such object is not a model according to the definition of Sec. 2.1 of [1] [https://doi.org/10.1016/j.jcp.2019.07.050], since it does not uniquely defines a map from the space of inputs (which is empty in this case) to the space of outputs. Thus, we refer to it as a metamodel since it defines rather a family of models.


Definig the problem

The problem is defined in \examples\tutorial\expmod.ini. With respect to the previous example, we have two new fields:


	fixed_x0 = 0: the individuals do not share the same initial state


	samples_variability = 1: the law of evolution may depend on parameters, different for each individual.






Definig the high-fidelity model

The model (or better, the metamodel) is defined in \examples\tutorial\expmod_getmodel.m. With respect to the previous example, we notice the following differences:


	Also the number of parameters (nA) and their bounds are defined


	The right-hand side depends on the parameter, thus it is assigned into f_alpha


	The derivatives of the right-hand side w.r.t. the state and the parameters are provided. This is not mandatory, unless the model will be later used for data assimilation purposes.




We can now load the model:

problem = problem_get('tutorial','expmod.ini');
HFmod = problem.get_model(problem);





Notice that we cannot test directly the model, since it is just a metamodel. First, we have to particularize it, i.e. assigning initial condtion (e.g. x_0 = 1.1) and parameter (e.g. a = 0.5):

HFmod_particularized = metamodel_particularize(HFmod, 1.1, .5);





Now, we can solve the model as before:

figure()
model_solve(struct('tt',[0 1]), HFmod_particularized, struct('do_plot',1))





Otherwise, with the following command, we assign a random initial state and a random parameter, and show the result:

model_show_example(HFmod);







Generating training datasets

As before, with the following commands we generate a training dataset. In this case, initial state and parameters will be randomly generated.:

rng('default')

opt_gen.do_plot = 1;
opt_gen.do_save = 1;
opt_gen.T = 1;
opt_gen.outFile = 'samples.mat';
dataset_generate_random(HFmod,100,opt_gen);







Training the ANN

As before, we define the learning specifications in the file \examples\tutorial\expmod_opt.ini. The main differences are:


	We must specify the number of parameters in the learned model, by Model\N_alpha


	We add some noise, by Problem\noise_y




To train the network, run:

model_learn('expmod_opt.ini')







Using the trained model

As before, the learned model can be loaded by:

ANNmod = read_model_fromfile(problem,'test_int_N1_hlayF3_dof13_2019-02-28_17-51-59');





Notice that the learned model is also a metamodel! To use it, it should first be particularized. Otherwise, one can show a possible evolution of an individual with the command:

model_show_example(ANNmod);





When the parameter is just one, the original and learned parameters can be compared by:

model_alpha_plot(ANNmod);







Using data assimilation on the learned model

To test how Extended Kalman Filter performs on a given metamodel and for a given level of noise, the command da_test can be used. It can be used both with the high-fidelity and learned model, since they are metamodels:

noise = 1e-3;
da_test(HFmod, noise);
da_test(ANNmod, noise);





The following command instead, performs the following steps:


	It randomly generates an indidual and simulates its evolution by means of the high-fidelity model;


	It adds the prescribed amount of noise;


	For the first half of the time span of the simulation, it performs data assimilation through the learned model, to estimate the parameter of the individual and its state;


	It uses those two estimated values to predict the future evolution of the individual and computes the error.




opt_ep.mod_HF = HFmod;
opt_ep.obs_err = 1e-3;
opt_ep.pause_each_test = 1;
opt_ep.do_plot = 1;
da_estimate_predict(problem,ANNmod,opt_ep);





By pressing ENTER, the process is reapeated for other individuals and the mean error is computed.

With the following command instead, the same process is repeated for different noise levels (without stopping at each individual), and the convergence plot is shown.:

opt_ep.mod_HF = HFmod;
opt_ep.obs_err = 10.^-(1:8);
opt_ep.pause_each_test = 0;
opt_ep.do_plot = 0;
opt_ep.n_tests = 20;
da_estimate_predict(problem,ANNmod,opt_ep);









            

          

      

      

    

  

    
      
          
            
  
Documentation



	The folder example
	What is an example?

	How to create a new example?





	The struct problem
	What is a problem?

	How is a problem represented?





	The struct model
	What is a model?

	How is a model represented?
	Black-box models

	Explicitly-defined models





	How to create or load a model struct?

	What can I do with a model struct?





	The struct test
	What is a test?

	How is a test represented?





	The struct dataset
	What is a dataset?

	How is a dataset represented?

	How to generate a dataset?

	How to save and load a dataset?

	How to plot a dataset?












            

          

      

      

    

  

    
      
          
            
  
The folder example


What is an example?

In this library, an example is simply a logical container that groups the files corresponding to a apecific application of the library. It corresponds to a folder contained in /examples. For instance, each of the test cases considered in [1] [https://doi.org/10.1016/j.jcp.2019.07.050] has its own example folder.



How to create a new example?

If you want to develop your own application with the library model-learning, you simply have to create a folder inside /examples.


Note

Inside /examples, folders starting with the prefix app_ (the standard prefix for custom applications) are automatically gitignored.







            

          

      

      

    

  

    
      
          
            
  
The struct problem


What is a problem?

In this library, a problem corresponds to some physical, social, economical time-dependent phenomenon that we aim at describing in mathematical terms.
It mainly consists in the definition of the input-output variables (how many they are, which are the bounds for each variable).
Notice that a problem does not contain any information about the map linking inputs to outputs: such map is rather defined by a model, which is a different concept. Indeed, for a given problem one may have several models.

Each problem must be contained in an example. Notice that, however, every example can contain more that one problem.



How is a problem represented?

A problem is represented as a MATLAB struct [https://www.mathworks.com/help/matlab/ref/struct.html].

To easiest (and safest) way of generating a problem struct is to define its features through an .ini file. The full list of tags to define a problem is available in \examples\problem_example.ini. Then, the problem struct can be generated by the command:

problem = problem_get('EXAMPLE_NAME','PROBLEM_DEFINITION.ini');









            

          

      

      

    

  

    
      
          
            
  
The struct model


What is a model?

A model can be regarded as a map from a time-dependent input to a time-dependent output, according to the definition of Sec. 2.1 of [1] [https://doi.org/10.1016/j.jcp.2019.07.050]. Each model is associated to a problem. Notice that a model comprises both the mathematical model and its discretization: it corresponds thus to the concept of numerical model.



How is a model represented?

A model is represented as a MATLAB struct [https://www.mathworks.com/help/matlab/ref/struct.html]. The struct must contain a field model.problem, containing the associated problem struct.

Models can be of two types: black-box models or explicitly-defined models.


Black-box models

Black-box models are characterized by the field model.blackbox = 1. The input-output map is defined through a function handle model.forward_function, with the following signature:

output = forward_function(test, options)





This function receives an input test struct and returns an output test struct. An example of definition of such function is contained in \examples\tutorial\NTL1_getmodel_blackbox.m.

Black-box models are useful when one wants to build a wrapper to an external software.



Explicitly-defined models

Explicitly-defined models contain the explicit definition of the properties of the model. In this case, the model struct must contain the following fields:

Basic fields


	model.nX: number of internal states


	model.x0: initial state


	model.dt: integration time step




Model dynamics

The model dynamics can be defined in different ways, according to the field model.advance_type, that takes the following values:


	'solveonestep': the most generic case. It requires a function x = model.solveonestep(x,u,dt) that advances the state of one time step.


	'solveonestep_linear': like 'solveonestep', but this entails the solution of a linear system \(Kx = r\). It requires a function [K,r] = model.solveonestep(x,u,dt).


	'nonlinear_explicit': explicit Euler advance, with generic right-hand side, defined by the function rhs = model.f(x,u).


	'linear_CN_uaffine': generic linear model, with Crank-Nicolson advance, with affine dependence on \(\mathbf{u}(t)\).


	'linear_advance': generic linear model.


	'linear_advance_timeexplicit': generic linear model, with explicit dependence on \(\Delta t\).


	'linear_advance_uaffine': generic linear model, with affine dependence on \(\mathbf{u}(t)\).


	'linear_advance_timeexplicit_uaffine': generic linear model, with explicit dependence on \(\Delta t\) and with affine dependence on \(\mathbf{u}(t)\).




For the definition of the fields required according to the field model.advance_type, see the function core/model_solve.m

Model output

Also the output of the model can be defined in different ways, according to the field model.output_type, that takes the following values:


	'insidestate': the output is given by the first nY internal states (i.e. y = x(1:nY)).


	'nonlinear': the output is a non-linear function of the state: y = model.g(x).


	'linear': the output is a non-linear function of the state: y = model.G * x + model.g0.





Note

The first case corresponds to the input-inside-the-state approach of [1] [https://doi.org/10.1016/j.jcp.2019.07.050], while the other two correspond to the input-outside-the-state approach.






How to create or load a model struct?

The best-practice is that of creating models by means of ad-hoc functions. Examples are contained in \examples\tutorial\NTL1_getmodel_blackbox.m (black-box case) and \examples\tutorial\NTL1_getmodel.m (explicitly-defined case).

Such model constructors, that receive in input the problem struct, can be used in the .ini file defining a problem to define the high-fidelity model handler. In this case, the high-fidelity model associated with a problem can be obtained, for example, with the folowing commands:

problem = problem_get('tutorial','NTL1.ini');
HFmod = problem.get_model(problem);





Also reduced models based on ANNs are models, in the sense of the definition of this page. To load a trained model, you can use the following function:

ANNmod = read_model_fromfile(problem,'FOLDER_OF_TRAINED_MODEL');







What can I do with a model struct?

Models structs can be used to perform simulations. With the following command, for instance, we employ the model defined in the struct model to obtain the output test struct test_output associated with the input test struct test_input and we plot the solution:

figure();
test_output = model_solve(test_input, model, struct('do_plot',1));









            

          

      

      

    

  

    
      
          
            
  
The struct test


What is a test?

A test represents a time-dependent input \(\mathbf{u}(t)\) in an interval \([0,T]\) and, optionally, the corresponding output \(\mathbf{y}(t)\) and state \(\mathbf{x}(t)\).



How is a test represented?

A test is represented as a MATLAB struct [https://www.mathworks.com/help/matlab/ref/struct.html]. The time is defined in the field test.tt, while the input, output and state are defined in the fields test.uu, test.yy, test.xx, respectively.

A test can be defined analytically, as in the following example:

test.tt = [0, 10];
test.uu = @(t) sin(t);





Otherwise, the test can be defined by a set of discrete values, as in the following example:

test.tt = linspace(1,10,200);
test.uu = sin(test.tt);





In case of vector-valued input (i.e. nU > 1 in the problem definition), each entries of the input corresponds to a row of test.uu (the same convention if employed also for test.yy and test.xx), that is:

test.uu = @(t) [sin(t); cos(t)];





or

test.uu = [sin(test.tt); cos(test.tt)];





In case the value of test.uu for a time step not contained in test.tt is needed, a linear interpolation is performed.


Note

Both the input and the output of a simulation are represented as test structs. For example, with the following line one can obtain the solution corresponding the input \(\mathbf{u}(t) = \sin(t)\) in the interval \(t \in [0,10]\) for the model represented by the struct model:

test_input.tt = linspace(1,10,200);
test_input.uu = sin(test.tt);
test_output = model_solve(test_input, model);







In this example, both test_input and test_output are test structs. However, while the former contains only the fields test_input.tt and test_input.uu, the latter contains the fields test_output.tt, test_output.uu and test_output.yy. Additionally, by specifying the option save_x as follows:

test_output = model_solve(test_input, model, struct('save_x', 1));





the struct test_output also contains the field test_output.xx.





            

          

      

      

    

  

    
      
          
            
  
The struct dataset


What is a dataset?

A dataset is a collection of tests.



How is a dataset represented?

A dataset is represented as a MATLAB cell array [https://www.mathworks.com/help/matlab/cell-arrays.html]. Each cell is a test struct. Notice that the tests of the same dataset can be defined on different time intervals \([0,T]\).



How to generate a dataset?

A dataset can be manually generated. For instance, the following code creates a dataset with three tests:

% first test
dataset{1}.tt = linspace(0,10,250);
dataset{1}.uu = sin(dataset{1}.tt);
dataset{1}.yy = cos(dataset{1}.tt);

% second test
dataset{2}.tt = linspace(0,20,250);
dataset{2}.uu = exp(dataset{2}.tt);
dataset{2}.yy = 2 + dataset{2}.tt;

% third test
dataset{3}.tt = linspace(0,10,250);
dataset{3}.uu = 0 * dataset{3}.tt + pi;
dataset{3}.yy = tanh(dataset{3}.tt);





The following example, instead, creates a dataset with three tests, each one being the solution of the model defined in the struct model:

test.tt = [0, 10];

% first test
test.uu = @(t) sin(t);
dataset{1} = model_solve(test, model);

% second test
test.uu = @(t) cos(t);
dataset{2} = model_solve(test, model);

% third test
test.uu = @(t) sin(t) + cos(t);
dataset{3} = model_solve(test, model);





Equivalentely, you can first generate a dataset containing only the inputs, and then obtain the outputs associated with the model defined in the struct model with a single command, thanks to the function dataset_generate. The following code provides the same results as the previous one:

dataset_input{1}.tt = [0, 10];
dataset_input{1}.uu = @(t) sin(t);

dataset_input{2}.tt = [0, 10];
dataset_input{2}.uu = @(t) cos(t);

dataset_input{3}.tt = [0, 10];
dataset_input{3}.uu = @(t) sin(t) + cos(t);

dataset = dataset_generate(model, dataset_input);





To generate a dataset with the goal of training an ANN-based model, it is useful to employ random inputs. This operation can be easily performed with the following command:

dataset = dataset_generate_random(model, 100)





that generates a dataset with 100 tests, where the inputs \(\mathbf{u}_j(t)\), for \(j = 1, \dots, 100\) are generated by an algorithm of random time-series generation (see /tools/get_random_time_course.m).

With the following command, instead, we generate a dataset with 20 tests associated with random constant inputs (i.e. \(\mathbf{u}_j(t) \equiv \overline{\mathbf{u}}_j\) for \(j = 1, \dots, 100\)), where the values of \(\overline{\mathbf{u}}_j\) are obtained by Monte Carlo sampling [https://en.wikipedia.org/wiki/Monte_Carlo_method] of the input space defined in the problem struct:

dataset = dataset_generate_random(model, 20, struct('constant', 1));





By specifying the option lhs = 1, the values of \(\overline{\mathbf{u}}_j\) are generated by latin hypercube sampling [https://en.wikipedia.org/wiki/Latin_hypercube_sampling]:

dataset = dataset_generate_random(model, 20, struct('constant', 1, 'lhs', 1));







How to save and load a dataset?

Sometimes it is useful to give a name to a dataset and to save it, so that it can be later reused. This can be done with the following function:

dataset_save(problem, dataset, 'my_dataset.mat')





When the dataset is generated through the functions dataset_generate or dataset_generate_random, it can be directly stored by passing the options do_save = 1 and outFile = 'FILENAME.mat'. For instance, with the following code a dataset with 100 random tests is stored:

opt_gen.do_save = 1;
opt_gen.outFile = 'samples_rnd.mat';
dataset_generate_random(model, 100, opt_gen);





Datasets are stored in an automatically generated path inside the data folder defined in options.ini (see Installation), under the name of 'samples_rnd.mat'. Notice that each problem has its own path (that can be found in problem.dir_data): this entails that the same dataset name can be used for different problems without any conflict. On the other hand, if a dataset with the same name has been already defined for the same problem, it is overwritten by the new one.

The following code loads a previously saved dataset:

dataset_def.problem = problem;
dataset_def.type = 'file';
dataset_def.source = 'samples_rnd.mat';
train_dataset = dataset_get(dataset_def);





It is possible to load a subset of a dataset with the following sintax, that loads only the tests number 2, 3, 5, 6, 7 and 8:

dataset_def.source = 'samples_rnd.mat;[2,3,5:8]';





It is also possible to combine datasets in a single dataset:

dataset_def.source = 'samples_step.mat;[2,3,5:8]|samples_rnd.mat;1:8';







How to plot a dataset?

To plot the dataset, type:

dataset_plot(train_dataset, problem)
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